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Abstract: 

Rapid, accurate detection of coronavirus disease 2019 (COVID-19) has been essential 

for epidemic control. While reverse-transcription polymerase chain reaction (RT-

PCR) remains the reference standard, constraints in turnaround time, access, and 

sensitivity under certain conditions have motivated the use of Artificial Intelligence 

(AI) to assist screening and diagnosis from complementary data sources: medical 

images (chest radiographs and computed tomography), respiratory audio 

(cough/voice/breath), wearable and consumer-device signals, and clinical/electronic 

health record (EHR) data. This review synthesizes key datasets, model families, 

validation strategies, and performance trends, and highlights persistent pitfalls 

including dataset bias, information leakage, lack of external validation, and 

explainability gaps. We conclude with a roadmap for robust, clinically useful AI 

systems: rigorous study design, standardized reporting, multicenter external testing, 

prospective evaluation, human factors integration, and governance for safety, privacy, 

and equity. 
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1. Introduction 

The COVID‑19 pandemic spurred an unprecedented wave of AI research aimed at 

assisting detection, triage, and prognosis. Early work focused on distinguishing 

COVID‑19 from other causes of pneumonia on chest imaging; soon after, researchers 

explored respiratory audio captured by smartphones, passive sensing from wearables, 

and structured clinical data. Despite thousands of publications, translation to routine 

care has been uneven. This review concentrates on AI for *detection*—identifying 

current infection or COVID‑compatible pneumonia—rather than prognosis, resource 
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allocation, or epidemiologic modeling. We survey data modalities, representative 

datasets, model architectures, validation practices, and performance, then discuss 

common pitfalls and pathways to trustworthy deployment. 

2. Data Modalities and Typical AI Pipelines 

AI detection systems follow a common pipeline: (i) data acquisition; (ii) quality 

control and preprocessing (normalization, augmentation, segmentation); (iii) model 

training with appropriate cross‑validation; (iv) evaluation on internal and external test 

sets; and (v) explainability and uncertainty quantification. Below we outline 

strengths/limitations by modality. 

2.1 Chest X‑ray (CXR) 

Advantages: ubiquitous, low cost, portable. Challenges: subtle findings, confounding 

from devices/positioning, and label noise due to imperfect RT‑PCR ground truth. 

2.2 Computed Tomography (CT) 

Advantages: higher sensitivity for pulmonary opacities and extent quantification. 

Challenges: resource intensity, radiation, and variable protocols across scanners and 

sites. 

2.3 Lung Ultrasound (LUS) 

Advantages: bedside, no radiation; promising for triage. Challenges: operator 

dependence and limited large public datasets. 

2.4 Respiratory Audio (Cough/Voice/Breath) 

Advantages: scalable, non‑invasive, amenable to telehealth. Challenges: 

heterogeneous devices/environments, label quality, and the need for symptom 

controls to avoid confounding. 

2.5 Wearables and Mobile Sensing 

Advantages: continuous passive monitoring (heart rate, step count, sleep, skin 

temperature). Challenges: population selection bias, temporal confounding, and 

personalization requirements. 

2.6 Clinical/EHR Data 

Advantages: rich multimodal features (vitals, labs, symptoms). Challenges: 

missingness, shift over time, and transportability. 

3. Representative Public and Consortial Datasets 

Table 1 summarizes widely referenced COVID‑19 detection datasets. Availability 

and licensing are subject to change; researchers should confirm governance and 

intended use. 
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Dataset / 

Source 

Modality Approx. 

Size 

(period) 

Notes Citation 

COVID-19 

Image Data 

Collection 

CXR/CT Thousands 

(2020–

2022) 

Curated from 

publications; 

heterogeneous 

quality 

Cohen et al., 

2020 

COVID-Net 

CXR datasets 

CXR Tens of 

thousands 

(2020–

2021) 

Benchmarks for 

COVID-Net 

models 

Wang & 

Wong, 2020 

BIMCV-

COVID19+ 

CXR/CT Thousands 

(2020–

2021) 

Spanish cohort with 

metadata 

de la Iglesia 

Vayá et al., 

2020 

UK Biobank 

COVID-19 

Imaging 

CXR/CT/MRI Thousands 

(2020–

2021) 

Linked 

clinical/longitudinal 

data 

UK Biobank 

Consortium 

MosMedData CT 1,100+ 

(2020) 

Severity-graded CT 

scans from Moscow 

Morozov et 

al., 2020 

RSNA 

International 

COVID-19 

Open 

Radiology 

Database 

(RICORD) 

CXR/CT Thousands 

(2020–

2021) 

Expert-labeled 

radiology data 

RSNA/ACR, 

2021 

Coswara / 

Cambridge 

COVID-19 

Sounds / 

COUGHVID 

Audio Tens of 

thousands 

(2020–

2022) 

Crowdsourced 

cough/voice/breath 

Brown et al., 

2021; 

Orlandic et 

al., 2021 

Scripps 

DETECT / 

RADAR-

Base 

Wearables Tens of 

thousands 

(2020–

2021) 

Consumer wearable 

+ symptom data 

Radin et al., 

2020; Quer 

et al., 2021 

Israeli MOH 

Symptom 

Survey 

Clinical/Symptom Millions 

(2020) 

Self-reported 

symptoms linked to 

tests 

Zoabi et al., 

2021 

4. Model Families and Training Practices 

Imaging models predominantly use transfer learning with ResNet, DenseNet, 

EfficientNet, and custom architectures such as COVID‑Net. Segmentation (e.g., 

U‑Net) aids lesion localization and severity scoring. Audio models often use CNNs 

on spectrograms, sometimes with RNN/Transformer back‑ends. Wearable/EHR 

models employ gradient boosting, random forests, or temporal deep networks. To 

reduce overfitting and leakage, robust design choices include patient‑level splits, 
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site‑held‑out external tests, time‑based validation, augmentation, calibration, and 

pre‑registration of analysis plans. 

5. Survey of Results 

Aggregated performance varies by modality, dataset quality, and evaluation design. 

Tables 2–4 summarize representative peer‑reviewed results. Values are indicative, 

emphasizing study design and validation strategy over single‑number leaderboards. 

Table 2. Selected Imaging-Based Detection Studies 

Study Modali

ty 

Model Data/Validati

on 

Reported 

Metric(s) 

Notes 

Li et al., 

2020 

(Radiology) 

CT DL classifier + 

lesion analysis 

1.3k pts; 

internal & 

external test 

AUC ~0.96 

(COVID vs 

CAP) 

Multicenter; 

early CT 

focus 

Harmon et 

al., 2020 

(Nat 

Commun) 

CT 3D CNN Multinational; 

external tests 

AUC >0.90 

(site‑pooled) 

Showed 

generalizati

on across 

scanners 

Bai et al., 

2020 

(Radiology) 

CT AI + radiologist 

comparison 

Multicenter; 

reader study 

AI AUC 

~0.90 

Augmented 

radiologist 

accuracy 

Wang & 

Wong, 

2020 

(COVID‑N

et) 

CXR Tailored CNN 

(COVID‑Net) 

Public CXR 

sets; external 

test 

Accuracy/A

UC vary by 

split 

Open‑source 

model/datas

ets 

Ozturk et 

al., 2020 

(CBM) 

CXR DarkCovidNet Multi‑source 

CXR; holdout 

test 

Acc. ~98% 

(binary)† 

High 

internal 

score; 

caution on 

leakage 

RSNA 

RICORD 

Benchmark

s, 2021 

CXR/CT ResNet/Efficient

Net 

Expert labels; 

external eval 

AUC ~0.80–

0.92 

More 

conservative

, 

standardized 

† High internal accuracies often drop on external datasets; see Discussion on 

generalization. 

Table 3. Selected Audio-Based Detection Studies 

Study Signal Model Data/Validatio

n 

Reporte

d 

Metric(s

) 

Notes 

Laguarta et 

al., 2020 

(IEEE 

OJEMB) 

Cough/Voic

e 

CNN + 

biomarker 

features 

4k+ samples; 

held‑out test 

Acc./AU

C up to 

~0.97 

(subset) 

Smartphone

-only 

feasibility 

study 

Brown et al., 

2021 (IEEE 

Cough/Voic

e 

CNN on 

log‑mel 

Crowdsourced; 

cross‑val & 

AUC 

~0.80–

Importance 

of 
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T‑ASLP) spectrogram

s 

external 0.90 symptom-

matched 

controls 

Orlandic et 

al., 2021 

(COUGHVID

) 

Cough Classical 

ML + CNN 

Crowdsourced; 

demographic 

strat. 

AUC 

~0.70–

0.85 

Label noise 

and device 

variability 

Table 4. Selected Wearables and Clinical Data Studies 

Study Data Model Design Reported 

Metric(s) 

Notes 

Mishra et 

al., 2020 

(Nat 

Biomed 

Eng) 

Smartwatch 

HR/steps/sleep 

Personalized 

anomaly 

detection 

Prospective 

case series 

Detection 

before 

symptoms in 

many cases 

Early warning 

feasibility 

Quer et al., 

2021 (Nat 

Med) 

Wearables + 

symptoms 

Gradient 

boosting 

Prospective 

app cohort 

AUC ~0.80 Improved with 

symptom data 

Zoabi et 

al., 2021 

(Sci Rep) 

Symptoms + 

demographics 

Gradient 

boosting 

National 

survey 

linked to 

PCR 

AUC ~0.90 Population‑scale 

screening 

6. Explainability, Uncertainty, and Human Factors 

Explainability tools (Grad‑CAM, occlusion, SHAP/LIME) can localize salient 

regions or features, supporting clinician trust. Calibrated probabilities and uncertainty 

estimation (e.g., temperature scaling, MC‑Dropout) are essential for safe triage 

decisions. Human‑centered design—clear user interfaces, failure mode 

communication, and alignment with clinical pathways—improves adoption. 

7. Common Pitfalls and Reporting Checklist 

Table 5 lists frequent issues and mitigation strategies for COVID‑19 detection 

models. 

Pitfall Why It Matters Mitigation 
Information leakage 

(image‑level splits) 

Inflated performance 

estimates 

Patient‑level or site‑level splits 

Confounders (site marks, 

devices) 

Spurious learning Harmonization, segmentation, 

adversarial debiasing 

Imbalanced datasets Biased PPV/NPV; instability Stratified sampling, 

class‑balanced losses, calibration 

Poor ground truth Noisy labels Confirmatory testing, radiology 

consensus 

No external validation Poor generalization Hold‑out institutions, time‑shift 

tests, prospective trials 

Opaque models Low trust and safety XAI, uncertainty quantification, 

decision support not replacement 
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8. Regulatory, Privacy, and Ethics 

Detection tools that inform clinical decision‑making may fall under medical‑device 

regulations. Developers should document intended use, performance on target 

populations, risk controls, and post‑market surveillance. Privacy‑preserving 

techniques such as federated learning and differential privacy can reduce data sharing 

risks. Equity assessments must examine performance across demographic and clinical 

subgroups to avoid exacerbating disparities. 

9. Future Directions 

Promising directions include: (i) larger, harmonized, and prospectively curated 

datasets; (ii) multimodal fusion of imaging, audio, and clinical context; (iii) 

self‑supervised and foundation models adapted to limited labels; (iv) causal inference 

and counterfactual explanations for robustness; (v) prospective, randomized impact 

evaluations; and (vi) lifecycle monitoring with dataset and model cards. 

10. Discussion 

Across modalities, internal test performance often appears high, yet decreases under 

external validation, reflecting distribution shifts and confounding. Imaging models 

are strongest for identifying moderate‑to‑severe pneumonia but cannot replace 

virologic testing for early or asymptomatic infection. Audio and wearable approaches 

offer scalable screening but require careful personalization and context. Clinical/EHR 

models can aid pre‑test risk estimation when combined with local prevalence and 

symptom profiles. A pragmatic approach is human‑AI teaming: algorithms prioritize 

cases or flag anomalies, while clinicians integrate history, examination, and 

laboratory testing. Well‑designed systems document uncertainty, provide 

interpretable cues, and undergo continuous quality improvement. 

Abbreviations 

AI: Artificial Intelligence; ML: Machine Learning; DL: Deep Learning; CNN: 

Convolutional Neural Network; RNN: Recurrent Neural Network; LSTM: Long 

Short‑Term Memory; CXR: Chest X‑ray; CT: Computed Tomography; AUC: Area 

Under the Receiver Operating Characteristic Curve; AUCPR: Area Under the 

Precision‑Recall Curve; PPV: Positive Predictive Value; NPV: Negative Predictive 

Value; RT‑PCR: Reverse Transcription Polymerase Chain Reaction; EHR: Electronic 

Health Record; XAI: Explainable AI; Grad‑CAM: Gradient‑weighted Class 

Activation Mapping. 
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