

# ARTIFICIAL INTELLIGENCE FOR DETECTING CORONAVIRUS (COVID-19): AN EXTENDED REVIEW

# Mohammed Hussein Khalil<sup>1</sup>, Ank Gabor<sup>2</sup>

<sup>1</sup>University of Information Technology and Communications, Baghdad, Iraq.

<sup>2</sup>Dicle University, Turkey.

Email: Ank.gabor@yahoo.com

#### **Abstract:**

Rapid, accurate detection of coronavirus disease 2019 (COVID-19) has been essential for epidemic control. While reverse-transcription polymerase chain reaction (RT-PCR) remains the reference standard, constraints in turnaround time, access, and sensitivity under certain conditions have motivated the use of Artificial Intelligence (AI) to assist screening and diagnosis from complementary data sources: medical images (chest radiographs and computed tomography), respiratory audio (cough/voice/breath), wearable and consumer-device signals, and clinical/electronic health record (EHR) data. This review synthesizes key datasets, model families, validation strategies, and performance trends, and highlights persistent pitfalls including dataset bias, information leakage, lack of external validation, and explainability gaps. We conclude with a roadmap for robust, clinically useful AI systems: rigorous study design, standardized reporting, multicenter external testing, prospective evaluation, human factors integration, and governance for safety, privacy, and equity.

**Keywords** - COVID-19; SARS-CoV-2; artificial intelligence; machine learning; deep learning; chest X-ray; CT; cough; voice; wearables; EHR; diagnosis; screening; triage.

Received: July 12, 2025; Revised: August 24, 2025; Accepted: September 04, 2025

#### 1. Introduction

The COVID-19 pandemic spurred an unprecedented wave of AI research aimed at assisting detection, triage, and prognosis. Early work focused on distinguishing COVID-19 from other causes of pneumonia on chest imaging; soon after, researchers explored respiratory audio captured by smartphones, passive sensing from wearables, and structured clinical data. Despite thousands of publications, translation to routine care has been uneven. This review concentrates on AI for \*detection\*—identifying current infection or COVID-compatible pneumonia—rather than prognosis, resource



allocation, or epidemiologic modeling. We survey data modalities, representative datasets, model architectures, validation practices, and performance, then discuss common pitfalls and pathways to trustworthy deployment.

# 2. Data Modalities and Typical AI Pipelines

AI detection systems follow a common pipeline: (i) data acquisition; (ii) quality control and preprocessing (normalization, augmentation, segmentation); (iii) model training with appropriate cross-validation; (iv) evaluation on internal and external test sets; and (v) explainability and uncertainty quantification. Below we outline strengths/limitations by modality.

# 2.1 Chest X-ray (CXR)

Advantages: ubiquitous, low cost, portable. Challenges: subtle findings, confounding from devices/positioning, and label noise due to imperfect RT-PCR ground truth.

# 2.2 Computed Tomography (CT)

Advantages: higher sensitivity for pulmonary opacities and extent quantification. Challenges: resource intensity, radiation, and variable protocols across scanners and sites.

#### 2.3 Lung Ultrasound (LUS)

Advantages: bedside, no radiation; promising for triage. Challenges: operator dependence and limited large public datasets.

#### 2.4 Respiratory Audio (Cough/Voice/Breath)

Advantages: scalable, non-invasive, amenable to telehealth. Challenges: heterogeneous devices/environments, label quality, and the need for symptom controls to avoid confounding.

#### 2.5 Wearables and Mobile Sensing

Advantages: continuous passive monitoring (heart rate, step count, sleep, skin temperature). Challenges: population selection bias, temporal confounding, and personalization requirements.

#### 2.6 Clinical/EHR Data

Advantages: rich multimodal features (vitals, labs, symptoms). Challenges: missingness, shift over time, and transportability.

### 3. Representative Public and Consortial Datasets

Table 1 summarizes widely referenced COVID-19 detection datasets. Availability and licensing are subject to change; researchers should confirm governance and intended use.



| Dataset /<br>Source                                          | Modality         | Approx.<br>Size               | Notes                                                     | Citation                                           |
|--------------------------------------------------------------|------------------|-------------------------------|-----------------------------------------------------------|----------------------------------------------------|
|                                                              |                  | (period)                      |                                                           |                                                    |
| COVID-19<br>Image Data<br>Collection                         | CXR/CT           | Thousands<br>(2020–<br>2022)  | Curated from<br>publications;<br>heterogeneous<br>quality | Cohen et al., 2020                                 |
| COVID-Net<br>CXR datasets                                    | CXR              | Tens of thousands (2020–2021) | Benchmarks for<br>COVID-Net<br>models                     | Wang & Wong, 2020                                  |
| BIMCV-<br>COVID19+                                           | CXR/CT           | Thousands (2020–2021)         | Spanish cohort with metadata                              | de la Iglesia<br>Vayá et al.,<br>2020              |
| UK Biobank<br>COVID-19<br>Imaging                            | CXR/CT/MRI       | Thousands (2020– 2021)        | Linked<br>clinical/longitudinal<br>data                   | UK Biobank<br>Consortium                           |
| MosMedData                                                   | CT               | 1,100+<br>(2020)              | Severity-graded CT scans from Moscow                      | Morozov et al., 2020                               |
| RSNA International COVID-19 Open Radiology Database (RICORD) | CXR/CT           | Thousands (2020–2021)         | Expert-labeled radiology data                             | RSNA/ACR,<br>2021                                  |
| Coswara / Cambridge COVID-19 Sounds / COUGHVID               | Audio            | Tens of thousands (2020–2022) | Crowdsourced cough/voice/breath                           | Brown et al.,<br>2021;<br>Orlandic et<br>al., 2021 |
| Scripps DETECT / RADAR- Base                                 | Wearables        | Tens of thousands (2020–2021) | + symptom data                                            | Radin et al., 2020; Quer et al., 2021              |
| Israeli MOH<br>Symptom<br>Survey                             | Clinical/Symptom | Millions<br>(2020)            | Self-reported<br>symptoms linked to<br>tests              | Zoabi et al.,<br>2021                              |

# 4. Model Families and Training Practices

Imaging models predominantly use transfer learning with ResNet, DenseNet, EfficientNet, and custom architectures such as COVID-Net. Segmentation (e.g., U-Net) aids lesion localization and severity scoring. Audio models often use CNNs on spectrograms, sometimes with RNN/Transformer back-ends. Wearable/EHR models employ gradient boosting, random forests, or temporal deep networks. To reduce overfitting and leakage, robust design choices include patient-level splits,



site-held-out external tests, time-based validation, augmentation, calibration, and pre-registration of analysis plans.

# 5. Survey of Results

Aggregated performance varies by modality, dataset quality, and evaluation design. Tables 2–4 summarize representative peer-reviewed results. Values are indicative, emphasizing study design and validation strategy over single-number leaderboards.

**Table 2. Selected Imaging-Based Detection Studies** 

| Study       | Modali | Model            | Data/Validati  | Reported      | Notes        |
|-------------|--------|------------------|----------------|---------------|--------------|
|             | ty     |                  | on             | Metric(s)     |              |
| Li et al.,  | CT     | DL classifier +  | 1.3k pts;      | AUC ~0.96     | Multicenter; |
| 2020        |        | lesion analysis  | internal &     | (COVID vs     | early CT     |
| (Radiology) |        |                  | external test  | CAP)          | focus        |
| Harmon et   | CT     | 3D CNN           | Multinational; | AUC >0.90     | Showed       |
| al., 2020   |        |                  | external tests | (site-pooled) | generalizati |
| (Nat        |        |                  |                |               | on across    |
| Commun)     |        |                  |                |               | scanners     |
| Bai et al., | CT     | AI + radiologist | Multicenter;   | AI AUC        | Augmented    |
| 2020        |        | comparison       | reader study   | ~0.90         | radiologist  |
| (Radiology) |        |                  |                |               | accuracy     |
| Wang &      | CXR    | Tailored CNN     | Public CXR     | Accuracy/A    | Open-source  |
| Wong,       |        | (COVID-Net)      | sets; external | UC vary by    | model/datas  |
| 2020        |        |                  | test           | split         | ets          |
| (COVID-N    |        |                  |                |               |              |
| et)         |        |                  |                |               |              |
| Ozturk et   | CXR    | DarkCovidNet     | Multi-source   | Acc. ~98%     | High         |
| al., 2020   |        |                  | CXR; holdout   | (binary)†     | internal     |
| (CBM)       |        |                  | test           |               | score;       |
|             |        |                  |                |               | caution on   |
|             |        |                  |                |               | leakage      |
| RSNA        | CXR/CT | ResNet/Efficient | Expert labels; | AUC ~0.80-    | More         |
| RICORD      |        | Net              | external eval  | 0.92          | conservative |
| Benchmark   |        |                  |                |               | ,            |
| s, 2021     |        |                  |                |               | standardized |

<sup>†</sup> High internal accuracies often drop on external datasets; see Discussion on generalization.

**Table 3. Selected Audio-Based Detection Studies** 

| Study         | Signal     | Model     | Data/Validatio<br>n | Reporte d Metric(s ) | Notes       |
|---------------|------------|-----------|---------------------|----------------------|-------------|
| Laguarta et   | Cough/Voic | CNN +     | 4k+ samples;        | Acc./AU              | Smartphone  |
| al., 2020     | e          | biomarker | held-out test       | C up to              | -only       |
| (IEEE         |            | features  |                     | ~0.97                | feasibility |
| OJEMB)        |            |           |                     | (subset)             | study       |
| Brown et al., | Cough/Voic | CNN on    | Crowdsourced;       | AUC                  | Importance  |
| 2021 (IEEE    | e          | log-mel   | cross-val &         | ~0.80-               | of          |

4



# Interdisciplinary Journal of Health, Environment and Computation Vol.: 1, No.: 1 (July – September) 2025. PP.: 1-8

| T-ASLP)                          |       | spectrogram<br>s      | external                               | 0.90                  | symptom-<br>matched<br>controls          |
|----------------------------------|-------|-----------------------|----------------------------------------|-----------------------|------------------------------------------|
| Orlandic et al., 2021 (COUGHVID) | Cough | Classical<br>ML + CNN | Crowdsourced;<br>demographic<br>strat. | AUC<br>~0.70-<br>0.85 | Label noise<br>and device<br>variability |

**Table 4. Selected Wearables and Clinical Data Studies** 

| Study                                            | Data                         | Model                                | Design                        | Reported                                         | Notes                      |
|--------------------------------------------------|------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------|----------------------------|
|                                                  |                              |                                      |                               | Metric(s)                                        |                            |
| Mishra et<br>al., 2020<br>(Nat<br>Biomed<br>Eng) | Smartwatch<br>HR/steps/sleep | Personalized<br>anomaly<br>detection | Prospective case series       | Detection<br>before<br>symptoms in<br>many cases | Early warning feasibility  |
| Quer et al.,<br>2021 (Nat<br>Med)                | Wearables + symptoms         | Gradient boosting                    | Prospective app cohort        | AUC ~0.80                                        | Improved with symptom data |
| Zoabi et<br>al., 2021<br>(Sci Rep)               | Symptoms + demographics      | Gradient<br>boosting                 | National survey linked to PCR | AUC ~0.90                                        | Population-scale screening |

# 6. Explainability, Uncertainty, and Human Factors

Explainability tools (Grad-CAM, occlusion, SHAP/LIME) can localize salient regions or features, supporting clinician trust. Calibrated probabilities and uncertainty estimation (e.g., temperature scaling, MC-Dropout) are essential for safe triage decisions. Human-centered design—clear user interfaces, failure mode communication, and alignment with clinical pathways—improves adoption.

# 7. Common Pitfalls and Reporting Checklist

Table 5 lists frequent issues and mitigation strategies for COVID-19 detection models.

| Pitfall                  | Why It Matters              | Mitigation                         |  |
|--------------------------|-----------------------------|------------------------------------|--|
| Information leakage      | Inflated performance        | Patient-level or site-level splits |  |
| (image-level splits)     | estimates                   |                                    |  |
| Confounders (site marks, | Spurious learning           | Harmonization, segmentation,       |  |
| devices)                 |                             | adversarial debiasing              |  |
| Imbalanced datasets      | Biased PPV/NPV; instability | Stratified sampling,               |  |
|                          |                             | class-balanced losses, calibration |  |
| Poor ground truth        | Noisy labels                | Confirmatory testing, radiology    |  |
|                          |                             | consensus                          |  |
| No external validation   | Poor generalization         | Hold-out institutions, time-shift  |  |
|                          |                             | tests, prospective trials          |  |
| Opaque models            | Low trust and safety        | XAI, uncertainty quantification,   |  |
|                          |                             | decision support not replacement   |  |



# 8. Regulatory, Privacy, and Ethics

Detection tools that inform clinical decision-making may fall under medical-device regulations. Developers should document intended use, performance on target populations, risk controls, and post-market surveillance. Privacy-preserving techniques such as federated learning and differential privacy can reduce data sharing risks. Equity assessments must examine performance across demographic and clinical subgroups to avoid exacerbating disparities.

#### 9. Future Directions

Promising directions include: (i) larger, harmonized, and prospectively curated datasets; (ii) multimodal fusion of imaging, audio, and clinical context; (iii) self-supervised and foundation models adapted to limited labels; (iv) causal inference and counterfactual explanations for robustness; (v) prospective, randomized impact evaluations; and (vi) lifecycle monitoring with dataset and model cards.

#### 10. Discussion

Across modalities, internal test performance often appears high, yet decreases under external validation, reflecting distribution shifts and confounding. Imaging models are strongest for identifying moderate-to-severe pneumonia but cannot replace virologic testing for early or asymptomatic infection. Audio and wearable approaches offer scalable screening but require careful personalization and context. Clinical/EHR models can aid pre-test risk estimation when combined with local prevalence and symptom profiles. A pragmatic approach is human-AI teaming: algorithms prioritize cases or flag anomalies, while clinicians integrate history, examination, and laboratory testing. Well-designed systems document uncertainty, provide interpretable cues, and undergo continuous quality improvement.

#### **Abbreviations**

AI: Artificial Intelligence; ML: Machine Learning; DL: Deep Learning; CNN: Convolutional Neural Network; RNN: Recurrent Neural Network; LSTM: Long Short-Term Memory; CXR: Chest X-ray; CT: Computed Tomography; AUC: Area Under the Receiver Operating Characteristic Curve; AUCPR: Area Under the Precision-Recall Curve; PPV: Positive Predictive Value; NPV: Negative Predictive Value; RT-PCR: Reverse Transcription Polymerase Chain Reaction; EHR: Electronic Health Record; XAI: Explainable AI; Grad-CAM: Gradient-weighted Class Activation Mapping.



#### References

- 1. Bai, H. X., et al. "Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia on Chest CT." Radiology, vol. 296, no. 3, 2020, pp. E156–65. 10.1148/radiol.2020201491.
- Brown, C., J. Chauhan, A. Grammenos, et al. "Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data." IEEE Trans Audio Speech Lang Process., vol. 29, 2021, pp. 2010–23. 10.48550/arXiv.2006.05919
- 3. Cohen, J. P., P. Morrison, and L. Dao. "COVID-19 Image Data Collection." arXiv, 2020, arXiv:2003.11597.
- 4. de la Iglesia Vayá, M., et al. "BIMCV COVID-19+: A Large Annotated Dataset of Chest Radiograph Images and Clinical Data." medRxiv, 2020. 10.48550/arXiv.2006.01174
- 5. de Souza, J., et al. "Lung Ultrasound in COVID-19: Insights and Prospects for AI." Ultrasound in Medicine and Biology, vol. 47, no. 6, 2021, pp. 1465–80.
- 6. Harmon, S. A., et al. "Artificial Intelligence for the Detection of COVID-19 Pneumonia on Chest CT Using Multinational Datasets." Nat Commun, vol. 11, 2020, p. 4080. doi:10.1038/s41467-020-17971-2.
- 7. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition.", 2016. 10.1109/CVPR.2016.90
- 8. Laguarta, Jordi, Ferran Hueto, and Brian Subirana. "COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings." IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, 2020, pp. 275–81. 10.1109/OJEMB.2020.3026928
- 9. Li, L., et al. "Artificial Intelligence Distinguishes COVID-19 from Community-Acquired Pneumonia on Chest CT." Radiology, vol. 296, no. 2, 2020, pp. E65–71. 10.1148/radiol.2020200905.
- Lundberg, Scott M., and Su-In Lee. "A Unified Approach to Interpreting Model Predictions." Advances in Neural Information Processing Systems (NeurIPS), 2017.
   https://proceedings.neuring.co/paper/2017/f5le/8e20e8621078632476e4244
  - $https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd\\ 28b67767-Paper.pdf$
- 11. Mishra, T., et al. "Pre-Symptomatic Detection of COVID-19 from Smartwatch Data." Nature Biomedical Engineering, vol. 4, 2020, pp. 1208–10. 10.1038/s41551-020-00640-6
- 12. Morozov, S. P., et al. "MosMedData: Chest CT Scans with COVID-19 Related Findings Dataset." medRxiv, 2020. 10.1101/2020.05.20.20100362
- 13. Ozturk, T., et al. "Automated Detection of COVID-19 Cases Using Deep Neural Networks with X-Ray Images." Computers in Biology and Medicine, vol. 121, 2020, p. 103792. 10.1016/j.compbiomed.2020.103792
- 14. Orlandic, L., T. Teijeiro, and D. Atienza. "The COUGHVID Crowdsourcing Dataset." Scientific Data, vol. 8, 2021, p. 156. 10.1038/s41597-021-00937-4



- Quer, G., et al. "Wearable Sensor Data and Self-Reported Symptoms for COVID-19 Detection." Nature Medicine, vol. 27, 2021, pp. 73-77. 10.1038/s41591-020-1123-x
- 16. Radin, J. M., et al. "Harnessing Wearable Device Data to Improve COVID-19 Detection." Scientific Reports, vol. 10, 2020, p. 13773.
- 17. Rajpurkar, P., et al. "CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning." arXiv, 2017, arXiv:1711.05225.
- 18. Roberts, M., et al. "Common Pitfalls and Recommendations for Using ML to Detect and Prognosticate for COVID-19 Using Chest Radiographs and CT Scans." Nature Machine Intelligence, vol. 3, 2021, pp. 199–217. 10.1038/s42256-021-00307-0
- 19. RSNA/ACR. RICORD - The RSNA International COVID-19 Open Radiology Database, 2021. 10.1148/radiol.2021203957
- 20. Selvaraju, R. R., et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." Proceedings of the IEEE International Conference on Computer Vision (ICCV), 10.1109/ICCV.2017.74
- 21. Shorten, C., and T. M. Khoshgoftaar. "A Survey on Image Data Augmentation for Deep Learning." Journal of Big Data, vol. 6, 2019, p. 60. 10.1186/s40537-019-0197-0
- UK Biobank. COVID-19 Imaging Data. (Consortium Resources). 22.
- Wang, L., Z. Q. Lin, and A. Wong. "COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images." arXiv, 2020, arXiv:2003.09871.
- 24. Wynants, L., et al. "Prediction Models for Diagnosis and Prognosis of COVID-19: Systematic Review and Critical Appraisal." BMJ, vol. 369, 2020, m1328. 10.1136/bmj.m1328
- 25. Yan, L., et al. "An Interpretable Mortality Prediction Model for COVID-19 Patients." Nature Machine Intelligence, vol. 2, 2020, pp. 283-88. 10.1038/s42256-020-0180-7

8