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Abstract:

Rapid, accurate detection of coronavirus disease 2019 (COVID-19) has been essential
for epidemic control. While reverse-transcription polymerase chain reaction (RT-
PCR) remains the reference standard, constraints in turnaround time, access, and
sensitivity under certain conditions have motivated the use of Artificial Intelligence
(AD) to assist screening and diagnosis from complementary data sources: medical
images (chest radiographs and computed tomography), respiratory audio
(cough/voice/breath), wearable and consumer-device signals, and clinical/electronic
health record (EHR) data. This review synthesizes key datasets, model families,
validation strategies, and performance trends, and highlights persistent pitfalls
including dataset bias, information leakage, lack of external validation, and
explainability gaps. We conclude with a roadmap for robust, clinically useful Al
systems: rigorous study design, standardized reporting, multicenter external testing,
prospective evaluation, human factors integration, and governance for safety, privacy,
and equity.
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1. Introduction

The COVID-19 pandemic spurred an unprecedented wave of Al research aimed at
assisting detection, triage, and prognosis. Early work focused on distinguishing
COVID-19 from other causes of pneumonia on chest imaging; soon after, researchers
explored respiratory audio captured by smartphones, passive sensing from wearables,
and structured clinical data. Despite thousands of publications, translation to routine
care has been uneven. This review concentrates on Al for *detection*—identifying
current infection or COVID-compatible pneumonia—rather than prognosis, resource
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allocation, or epidemiologic modeling. We survey data modalities, representative
datasets, model architectures, validation practices, and performance, then discuss
common pitfalls and pathways to trustworthy deployment.

2. Data Modalities and Typical Al Pipelines

Al detection systems follow a common pipeline: (i) data acquisition; (ii) quality
control and preprocessing (normalization, augmentation, segmentation); (iii) model
training with appropriate cross-validation; (iv) evaluation on internal and external test
sets; and (v) explainability and uncertainty quantification. Below we outline
strengths/limitations by modality.

2.1 Chest X-ray (CXR)

Advantages: ubiquitous, low cost, portable. Challenges: subtle findings, confounding
from devices/positioning, and label noise due to imperfect RT-PCR ground truth.

2.2 Computed Tomography (CT)

Advantages: higher sensitivity for pulmonary opacities and extent quantification.
Challenges: resource intensity, radiation, and variable protocols across scanners and
sites.

2.3 Lung Ultrasound (LUS)

Advantages: bedside, no radiation; promising for triage. Challenges: operator
dependence and limited large public datasets.

2.4 Respiratory Audio (Cough/Voice/Breath)

Advantages: scalable, non-invasive, amenable to telehealth. Challenges:
heterogeneous devices/environments, label quality, and the need for symptom
controls to avoid confounding.

2.5 Wearables and Mobile Sensing

Advantages: continuous passive monitoring (heart rate, step count, sleep, skin
temperature). Challenges: population selection bias, temporal confounding, and
personalization requirements.

2.6 Clinical/EHR Data

Advantages: rich multimodal features (vitals, labs, symptoms). Challenges:
missingness, shift over time, and transportability.

3. Representative Public and Consortial Datasets

Table 1 summarizes widely referenced COVID-19 detection datasets. Availability
and licensing are subject to change; researchers should confirm governance and
intended use.
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Dataset / Modality Approx. Notes Citation
Source Size
(period)
COVID-19 CXR/CT Thousands | Curated from | Cohen et al.,
Image Data (2020- publications; 2020
Collection 2022) heterogeneous
quality
COVID-Net | CXR Tens  of | Benchmarks for | Wang &
CXR datasets thousands | COVID-Net Wong, 2020
(2020- models
2021)
BIMCV- CXR/CT Thousands | Spanish cohort with | de la Iglesia
COVID19+ (2020- metadata Vaya et al.,,
2021) 2020
UK Biobank | CXR/CT/MRI Thousands | Linked UK Biobank
COVID-19 (2020- clinical/longitudinal | Consortium
Imaging 2021) data
MosMedData | CT 1,100+ Severity-graded CT | Morozov et
(2020) scans from Moscow | al., 2020
RSNA CXR/CT Thousands | Expert-labeled RSNA/ACR,
International (2020- radiology data 2021
COVID-19 2021)
Open
Radiology
Database
(RICORD)
Coswara /| Audio Tens  of | Crowdsourced Brown et al.,
Cambridge thousands | cough/voice/breath | 2021;
COVID-19 (2020- Orlandic et
Sounds / 2022) al., 2021
COUGHVID
Scripps Wearables Tens  of | Consumer wearable | Radin et al.,
DETECT / thousands | + symptom data 2020; Quer
RADAR- (2020- etal., 2021
Base 2021)
Israeli MOH | Clinical/Symptom | Millions Self-reported Zoabi et al.,
Symptom (2020) symptoms linked to | 2021
Survey tests

4. Model Families and Training Practices

Imaging models predominantly use transfer learning with ResNet, DenseNet,
EfficientNet, and custom architectures such as COVID-Net. Segmentation (e.g.,

U-Net) aids lesion localization and severity scoring. Audio models often use CNNs
on spectrograms, sometimes with RNN/Transformer back-ends. Wearable/EHR
models employ gradient boosting, random forests, or temporal deep networks. To
reduce overfitting and leakage, robust design choices include patient-level splits,
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site-held-out external tests, time-based validation, augmentation, calibration, and
pre-registration of analysis plans.

5. Survey of Results

Aggregated performance varies by modality, dataset quality, and evaluation design.
Tables 2—4 summarize representative peer-reviewed results. Values are indicative,
emphasizing study design and validation strategy over single-number leaderboards.

Table 2. Selected Imaging-Based Detection Studies

Study Modali | Model Data/Validati | Reported Notes
ty on Metric(s)

Li et al,|CT DL classifier + | 1.3k pts; | AUC ~0.96 | Multicenter;
2020 lesion analysis internal & | (COVID s | early CT
(Radiology) external test CAP) focus
Harmon et | CT 3D CNN Multinational; AUC >0.90 | Showed
al., 2020 external tests (site-pooled) | generalizati
(Nat on  across
Commun) scanners
Bai et al, | CT Al + radiologist | Multicenter; Al AUC | Augmented
2020 comparison reader study ~0.90 radiologist
(Radiology) accuracy
Wang & | CXR Tailored CNN | Public CXR | Accuracy/A | Open-source
Wong, (COVID-Net) sets;  external | UC vary by | model/datas
2020 test split ets
(COVID-N
et)
Ozturk et | CXR DarkCovidNet Multi-source Acc. ~98% | High
al., 2020 CXR; holdout | (binary)t internal
(CBM) test score;

caution on

leakage
RSNA CXR/CT | ResNet/Efficient | Expert labels; | AUC ~0.80— | More
RICORD Net external eval 0.92 conservative
Benchmark ,
s, 2021 standardized
+ High internal accuracies often drop on external datasets; see Discussion on
generalization.

Table 3. Selected Audio-Based Detection Studies
Study Signal Model Data/Validatio | Reporte | Notes
n d
Metric(s
)

Laguarta et | Cough/Voic | CNN + | 4k+ samples; | Acc./AU | Smartphone
al., 2020 | e biomarker held-out test C up to | -only
(IEEE features ~0.97 feasibility
OJEMB) (subset) study
Brown et al., | Cough/Voic | CNN on | Crowdsourced; AUC Importance
2021 (EEE | e log-mel cross-val & | ~0.80- of
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T-ASLP) spectrogram | external 0.90 symptom-
S matched
controls
Orlandic et | Cough Classical Crowdsourced; AUC Label noise
al., 2021 ML + CNN | demographic ~0.70- and device
(COUGHVID strat. 0.85 variability
)
Table 4. Selected Wearables and Clinical Data Studies
Study Data Model Design Reported Notes
Metric(s)
Mishra et | Smartwatch Personalized | Prospective | Detection Early warning
al., 2020 | HR/steps/sleep | anomaly case series | before feasibility
(Nat detection symptoms in
Biomed many cases
Eng)
Quer et al., | Wearables + | Gradient Prospective | AUC ~0.80 Improved with
2021 (Nat | symptoms boosting app cohort symptom data
Med)
Zoabi et | Symptoms + | Gradient National AUC ~0.90 Population-scale
al., 2021 | demographics | boosting survey screening
(Sci Rep) linked to
PCR

6. Explainability, Uncertainty, and Human Factors

Explainability tools (Grad-CAM, occlusion, SHAP/LIME) can localize salient
regions or features, supporting clinician trust. Calibrated probabilities and uncertainty
estimation (e.g., temperature scaling, MC-Dropout) are essential for safe triage
decisions. Human-centered design—clear user interfaces, failure mode
communication, and alignment with clinical pathways—improves adoption.

7. Common Pitfalls and Reporting Checklist

Table 5 lists frequent issues and mitigation strategies for COVID-19 detection

models.
Pitfall Why It Matters Mitigation
Information leakage | Inflated performance | Patient-level or site-level splits
(image-level splits) estimates
Confounders (site marks, | Spurious learning Harmonization, segmentation,
devices) adversarial debiasing
Imbalanced datasets Biased PPV/NPV; instability | Stratified sampling,
class-balanced losses, calibration

Poor ground truth Noisy labels Confirmatory testing, radiology
consensus

No external validation Poor generalization Hold-out institutions, time-shift
tests, prospective trials

Opaque models Low trust and safety XAlI, uncertainty quantification,
decision support not replacement
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8. Regulatory, Privacy, and Ethics

Detection tools that inform clinical decision-making may fall under medical-device
regulations. Developers should document intended use, performance on target
populations, risk controls, and post-market surveillance. Privacy-preserving
techniques such as federated learning and differential privacy can reduce data sharing
risks. Equity assessments must examine performance across demographic and clinical
subgroups to avoid exacerbating disparities.

9. Future Directions

Promising directions include: (i) larger, harmonized, and prospectively curated
datasets; (ii) multimodal fusion of imaging, audio, and clinical context; (iii)
self-supervised and foundation models adapted to limited labels; (iv) causal inference
and counterfactual explanations for robustness; (v) prospective, randomized impact
evaluations; and (vi) lifecycle monitoring with dataset and model cards.

10. Discussion

Across modalities, internal test performance often appears high, yet decreases under
external validation, reflecting distribution shifts and confounding. Imaging models
are strongest for identifying moderate-to-severe pneumonia but cannot replace
virologic testing for early or asymptomatic infection. Audio and wearable approaches
offer scalable screening but require careful personalization and context. Clinical/EHR
models can aid pre-test risk estimation when combined with local prevalence and
symptom profiles. A pragmatic approach is human-Al teaming: algorithms prioritize
cases or flag anomalies, while clinicians integrate history, examination, and
laboratory testing. Well-designed systems document uncertainty, provide
interpretable cues, and undergo continuous quality improvement.

Abbreviations

Al: Artificial Intelligence; ML: Machine Learning; DL: Deep Learning; CNN:
Convolutional Neural Network; RNN: Recurrent Neural Network; LSTM: Long
Short-Term Memory; CXR: Chest X-ray; CT: Computed Tomography; AUC: Area
Under the Receiver Operating Characteristic Curve; AUCPR: Area Under the
Precision-Recall Curve; PPV: Positive Predictive Value; NPV: Negative Predictive
Value; RT-PCR: Reverse Transcription Polymerase Chain Reaction; EHR: Electronic
Health Record; XAI: Explainable Al; Grad-CAM: Gradient-weighted Class
Activation Mapping.
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